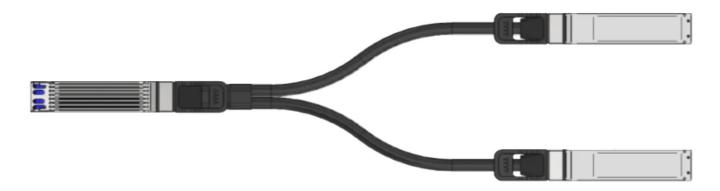


MCA7J60-Nxxx 800Gbs Twin-port OSFP to 2x400Gbs OSFP ACC Splitter Product Specifications

Table of contents

Overview	4
Pin Descriptions	5
Specifications	8
Ordering Information	18
Document Revision History	19

NVIDIA® MCA7J60 is an 800Gb/s twin-port OSFP (Octal Small Form-factor Pluggable) to 2x400Gb/s OSFP passive Active Copper Cable (ACC) dual breakout (aka splitter) cable. The ACC uses 8-channels of 100G-PAM4 modulation and has lengths of 4 and 5-meters. It has identical design and internals as the QSFP112 version, only with different connector shells.


The ACC firmware supports both InfiniBand and Ethernet and is automatically enabled depending on the protocol of the switch attached to. The 8-channel, twin-port, OSFP end uses a finned top form-factor for use in Quantum-2 and Spectrum-4 switch cages. The two 400G ends support 4-channels of 100G-PAM4 (400G) use a flat top OSFP for use in ConnectX-7 adapters using riding heat sinks on the connector cage. For use in liquid-cooled systems, a twin-port OSFP version is available with a flat top (designated -FLT in the part number).

ACC cables are the second lowest-cost, low-latency, low-power consuming, high-speed links next to passive DACs due to their simplicity of design and minimal components. The "active" term refers to the passive copper cable with an equalizer integrated circuit to extend the length to 4 and 5-meters while maintaining low-latency and low-power at 1.5 Watts and 0.6 Watts.

Thin 30AWG is used for 4m lengths and thicker 26AWG for 5m. Each end includes an EEPROM which provides product identification and characteristics to the host system.

Main use is linking an 800Gb/s Quantum-2 switch or Spectrum-4 switch to OSFP-based 400Gb/s ConnectX-7 PCle network adapter cards.

NVIDIA's cable solutions provide power-efficient connectivity enabling higher port bandwidth, density and configurability at a low cost and reduced power requirement in the data centers. Rigorous cable production testing ensures best out-of-the-box installation experience, performance, and durability.

Images are for illustration purposes only. Product labels, colors, and lengths may vary.

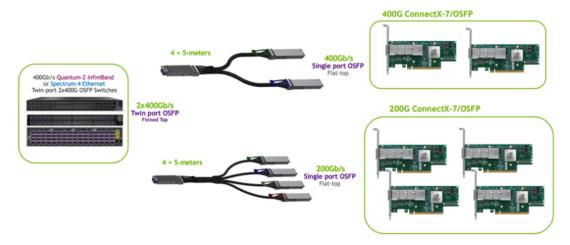
Key Features

- Up to 800Gb/s split to two 400Gb/s data rates
- Based on 100G-PAM4 modulation
- OSFP switch end 1.5 Watts
- Single port OSFP ends 0.6 Watts
- 4 and 5-meter lengths
- Operating case temperature 0-70°C
- Single 3.3V supply voltage
- Hot pluggable
- RoHS compliant
- LSZH (Low Smoke Zero Halogen) jacket
- LF (Lead Free) HF (Halogen Free) PCB
- OSFPxmsa.org compliant
- CMIS compliant I²C management interface

Applications

 Quantum-2 InfiniBand or Spectrum-4 Ethernet switch-to-two 400Gb/s ConnectX-7 OSFP adapters

Overview


The single port OSFP is used only with ConnectX-7/OSFP network adapters.

BlueField-3/QSFP112 DPUs and ConnectX-7/QSFP112 adapters require QSFP112 ends found on the MCA7J65 and MCA7J75.

Use case illustration:

ACC: 400G IB/EN SWITCH-TO- 2X AND 4X CONNECTX-7/OSFP

Twin port OSFP 2x400G to 2x 400G and 4x 200G single port OSFP ACC Cables

The splitter ACC cables are available in:

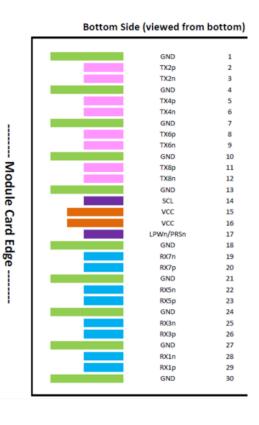
- 1:2 splits (2x 400G) MCA7J60 4-channels x 100G-PAM4
- 1:4 splits (4x 200G) MCA7J70 2-channels x 100G-PAM4.

Pin Descriptions

The device is compliant with the Specification for OSFP (Octal Small Form Factor Pluggable) Modules.

The pin assignment for the interface is shown below.

OSFP Pin Description


Pi n	Symbol	Description	Pi n	Symbol	Description
1	GND	Ground	31	GND	Ground
2	Тх2р	Transmitter Non-Inverted Data Input	32	Rx2p	Receiver Non-Inverted Data Output
3	Tx2n	Transmitter Inverted Data Input	33	Rx2n	Receiver Inverted Data Output
4	GND	Ground	34	GND	Grounds
5	Тх4р	Transmitter Non-Inverted Data Input	35	Rx4p	Receiver Non-Inverted Data Output
6	Tx4n	Transmitter Inverted Data Input	36	Rx4n	Receiver Inverted Data Output
7	GND	Ground	37	GND	Ground
8	Тх6р	Transmitter Non-Inverted Data Input	38	Rx6p	Receiver Non-Inverted Data Output
9	Tx6n	Transmitter Inverted Data Input	39	Rx6n	Receiver Inverted Data Output
10	GND	Ground	40	GND	Ground
11	Тх8р	Transmitter Non-Inverted Data Input	41	Rx8p	Receiver Non-Inverted Data Output
12	Tx8n	Transmitter Inverted Data Input	42	Rx8n	Receiver Inverted Data Output
13	GND	Ground	43	GND	Ground

14	SCL	2-wire serial interface clock	44	INT / RSTn	Module Interrupt / Module Reset
15	VCC	+3.3V Power	45	VCC	+3.3V Power
16	VCC	+3.3V Power	46	VCC	+3.3V Power
17	LPWn / PRSn	Low-Power Mode / Module Present	47	SDA	2-wire Serial interface data
18	GND	Ground	48	GND	Ground
19	Rx7n	Receiver Inverted Data Output	49	Tx7n	Transmitter Inverted Data Input
20	Rx7p	Receiver Non-Inverted Data Output	50	Тх7р	Transmitter Non-Inverted Data Input
21	GND	Ground	51	GND	Ground
22	Rx5n	Receiver Inverted Data Output	52	Tx5n	Transmitter Inverted Data Input
23	Rx5p	Receiver Non-Inverted Data Output	53	Tx5p	Transmitter Non-Inverted Data Input
24	GND	Ground	54	GND	Ground
25	Rx3n	Receiver Inverted Data Output	55	Tx3n	Transmitter Inverted Data Input
26	Rx3p	Receiver Non-Inverted Data Output	56	Тх3р	Transmitter Non-Inverted Data Input
27	GND	Ground	57	GND	Ground
28	Rxln	Receiver Inverted Data Output	58	Txln	Transmitter Inverted Data Input
29	Rxlp	Receiver Non-Inverted Data Output	59	Txlp	Transmitter Non-Inverted Data Input
30	GND	Ground	60	GND	Ground

OSFP Module Pad Layout

Top Side (viewed from top) 60 GND 59 TX1p TX1n 57 GND 56 ТХ3р 55 TX3n 54 GND ТХ5р TX5n GND 51 50 ТХ7р 49 TX7n 48 GND 47 SDA VCC 45 vcc 44 INT/RSTn 43 GND 42 RX8n 41 RX8p 40 GND RX6n 38 RX6p 37 GND 36 RX4n 35 RX4p 34 GND RX2n 32 RX2p

31

Specifications

Absolute Maximum Specifications

Absolute maximum ratings are those beyond which damage to the device may occur.

Between the operational specifications and absolute maximum ratings, prolonged operation is not intended and permanent device degradation may occur.

Parameter	Min	Max	Max
Supply Voltage	-0.3	3.6	V
Data Input Voltage	-0.3	3.6	V
Control Input Voltage	-0.3	3.6	V

Environmental Specifications

This table shows the environmental specifications for the product.

Parameter	Min	Max	Units
Storage Temperature	-40	85	°C

Operational Specifications

This section shows the range of values for normal operation.

Parameter	Min	Тур	Max	Units
Supply Voltage (Vcc)	3.135	3.3	3.465	V
Power Consumption (800G head end for the switch)	_	_	1.5	W
Power Consumption (400G tails for the HCA)	_	_	0.6	W
Operating Case Temperature	0		70	°C
Operating Relative Humidity	5		85	%

Electrical Specifications

Parameter	Min	Тур	Max	Units	Note
Characteristic impedance	90	100	110	Ω	
Time propagation delay	_	_	4.5	ns/m	Informative

OSFP Memory Map

Page 00 Addr.	Register Name	Value and Description
0	SFF8024 Identifier	19h: OSFP form factor 8x pluggable transceiver
1	CMIS Revision Compliance	50h: CMIS Rev 5.0
2	Memory Model, MciMaxSpeed	80h: Flat memory (no paging), no CLEI, max 400 kHz TWI (I2C) frequency
3	Global status	07h: Module Ready, Interrupt not asserted
04 - 84	Lanes and flags	00h: No lane flags, no DDM flags
85	Media Type	03h: Active Copper
86 - 117		Application Descriptors (8 x 4 bytes) numbered 18

Start Addr ess	Application Descriptor	Host IF	Media IF	Host/Media Lane cnt	Host Lane Assignment
86 - 89	1	31h: InfiniBand NDR, 2 ports	01h: Copper Cable	44h: 4 host + 4 media	11h: Lane 1 and 5
90 - 93	2	2Ch: IB SDR (4x two ports)	01h	44h	11h
94 - 97	3	1Ch: Eth 800GBASE-CR8 (8x one port)	01h	44h	11h
98 - 101	4	1Bh: Eth 400GBASE-CR4 (4x	01h	22h	55h

Page 00 Addr.	Register Na	me	Value and D	escription			
		two poi	rts)				
102 -105	5		OGBASE- our ports)	01h	44h	11h	
106 - 109	6		00GBASE- ght ports)	01h	22h	55h	
110 -113	7		OGBASE- ne port)	01h	11h	FFh	
114 - 117	8		00GBASE- vo ports)	01h	 11h	FFh	
118 - 121	Password Ch	ng Entry					
122 - 125	Password Er	ntry					
126	Bank Select	Byte					
127	Page Select	Byte					
128	SFF8024 Ide	entifier	19h: OSFP f addr 00)	orm factor 8x	pluggable transc	ceiver (same as	
129 - 144	VendorName	Э	Vendor nam	ne (ASCII), pado	led w spaces: 'N	VIDIA '	
145	VendorOUI		Nvidia OUI: 4	48h, B0h, 2Dh			
148 - 163	VendorPN		Part numbe	r: MCA7J60-Nx	×××'		
164 - 165	VendorRev		Revision				
166 - 181	VendorSN		Serial number				
182 - 189	DateCode		Date code, (YYMMDD)				
200	Power Class		00h: Power Class 1, 07h: max power in units of 0.25 W				
201	Max power consumption	า	04/02 (multiplier x 0.25W)				

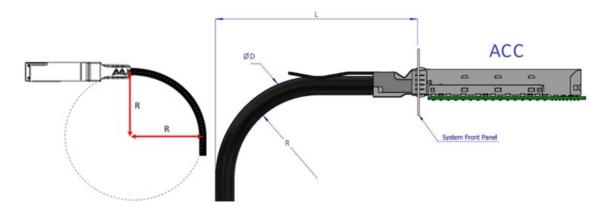
Page 00 Addr.	Register Name	Value and Description	
202	Link Length	Cable Length (m), 7-6: multiplier x value in bits 5-0 (00 = multiplier of .1 \ 01 = multiplier of 1\10 = multiplier of 10 \ 11 = multiplier of 100), e.g. 41h: 1 m	
203	Connector Type	Connector Type (SFF-8024) 23h: No separable connector	
204 - 207	Attenuation	Cable attenuation at 5, 7, 12.9, 25.8 GHz	
210	Media Lane Info	00h: all near end lanes are implemented	
211	Far End Config.	03h: 2x applications with 4x lanes each (aaaa,eeee)	
212	Media IF Technology	OAh: Copper cable, unequalized	
222	PageChecksum	Checksum of bytes 128-221 (low order 8 bits)	
223 - 255	Custom Info	Custom data including traceability info	

Handling Precautions and Electrostatic Discharge (ESD)

The cable is compatible with ESD levels in typical data center operating environments and certified in accordance with the standards listed in the Regulatory Compliance Section. The product is shipped with protective caps on its connectors to protect it until the time of installation. In normal handling and operation of high-speed cables and optical transceivers, ESD is of concern during insertion into the OSFP cage of the server/switch. Hence, standard ESD handling precautions must be observed. These include use of grounded wrist/shoe straps and ESD floor wherever a cable/transceiver is extracted/inserted. Electrostatic discharges to the exterior of the host equipment chassis after installation are subject to system level ESD requirements.

Mechanical Specifications

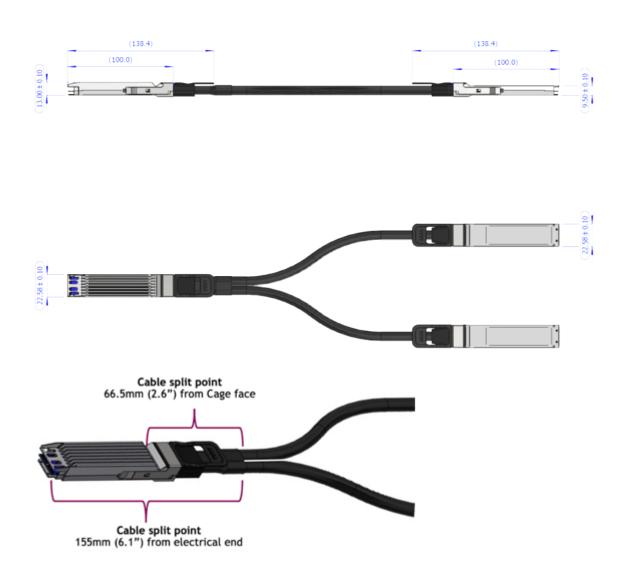
Parameter	Value	Units	
Diameter	30AWG: 7.2 ±0.03 26AWG: 8.9 ±0.03		
L 11- 1 - 1	length < 2 m	±25	
Length tolerance	length ≥ 2 m	±50	mm

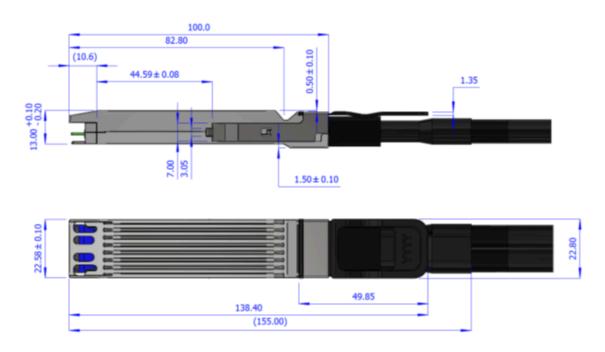

Minimum Bend Radius

OPN	Lengt h (m)	AWG (mm)	Cable Diameter	Min bend radius R (mm)	Assembly Space L* Combined/Single End (mm)*
MCA7J60 -N004	4.0	30AWG, 2x8pairs	7.2	72	135/128
MCA7J60 -N005	5.0	26AWG, 2x8pairs	8.9	89	156/147

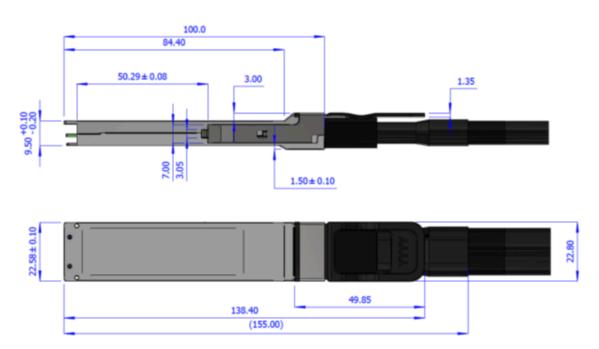
The minimum assembly bending radius (close to the connector) is 10x the cable's outer diameter. The repeated bend (far from the connector) is also 10x the cable's outer diameter. The single bend (far from the connector) is 5x the cable's outer diameter.

L = Assembly Space. Minimum value depends on the backshell (connector housing) dimensions = the space for the cable assembly behind the rack door.


Assembly Bending Radius


Mechanical Drawings

Dimensions


^{**&#}x27;Combined' end is the 'head' where the cables join together, inserted into the switch. 'Single' end is the 'tail' which plugs into the HCA/NIC in a server.

Finned Head Dimensions

Flat Ends Dimensions

Head/End	Tab Color
OSFP (Head)	Black
OSFP (End 1)	Yellow
OSFP (End 2)	Red

Labels

Backshell Label

The following label is applied on the cable's backshell. Note that the images are for illustration purposes only. Labels look and placement may vary.

OSFP switch end	OSFP split ends	
Model No: MCA7J60 PN: MCA7J60-N004 SN: MTYYWWXXSSSSS Rev: A2 Xm XXAWG Active YYYY-MM-DD 800Gb/s Made In COO NVIDIA	Model No: MCA7J60 PN: MCA7J60-N004 SN: MTYYWWXXSSSSS Rev: A2 Xm XXAWG YYYY-MM-DD 400Gb/s Made In COO NVIDIA	
made in 000	(sample illustration)	
Images are for illustration purposes only. Product labels, colors, and form may vary.		

Backshell Label Legend

Symbol	Meaning	Notes
PN – Part Number		
xx	Length	Meters
уу	Cable gauge	American wire gauge
SN – Serial Number		
MN	Manufacturer name	2 characters MT
YY	Year of manufacturing	2 digits
WW	Week of manufacturing	2 digits
MS	Manufacturer Site	2 characters
XXXXX	Serial number	5 digits for serial number. Reset at start of week to 00001.
Miscellaneo	pus	

ZZ	HW and SW revision	2 alpha-numeric characters
Xm	Cable length	Meters
XXAWG	Cable gauge	American wire gauge
YYYY-MM- DD	Year-month-day	Year 4 digits, month 2 digits, day 2 digits
COO	Country of origin	E.g., China
	Quick response code	Serial number

Cable Jacket Label (Middle of Cable)

The following label is applied on the cable's jacket. Note that the images are for illustration purposes only. Labels look and placement may vary.

(sample illustration)

The serial number and barcode are for NVIDIA internal use only. Images are for illustration purposes only. Product labels, colors, and form may vary.

Regulatory Compliance and Classification

- Safety: CB, TUV, CE, EAC, UKCA
- EMC: CE, FCC, ICES, RCM, VCCI

Ask your NVIDIA FAE for a zip file of the certifications for this product.

FCC Class A Notice

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Ordering Information

Ordering PN	Description
MCA7J60- N004	NVIDIA active copper splitter cable, IB twin port NDR 800Gb/s to 2x400Gb/s, OSFP to 2xOSFP, 4m
MCA7J60- N005	NVIDIA active copper splitter cable, IB twin port NDR 800Gb/s to 2x400Gb/s, OSFP to 2xOSFP, 5m

Document Revision History

Revision	Date	Description of Changes
1.3	Sep. 2024	Added tabs color guidance table.
1.2	Apr. 2023	Formatted for html on-line.
1.1	Oct. 2022	Updated the introduction. Minor text edits.
1.0	Dec. 2022	Initial release. Preliminary and subject to change.

as a warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation ("NVIDIA") makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

>NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

>cbr/>
>customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer ("Terms of Sale"). NVIDIA hereby expressly objects to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer's own risk.

>h/>
>NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer's sole responsibility to evaluate and determine the applicability of any information contained in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer's product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.
br/>
>cbr/>
>No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

keproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

>tr/>
>THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT

© Copyright 2024, NVIDIA. PDF Generated on 09/25/2024